

Miria M. Finckenor NASA/Marshall Space Flight Center

James M. Zwiener, Amy Alvis, Steve Jones, Ken Jones AZ Technology, Huntsville, AL

National Space and Missile Materials Symposium
Scottsdale, AZ
June 2010

Materials on International Space Station Experiment (MISSE) - 6

Deployed: March 13, 2008 on STS-123

Retrieved: September 1, 2009 on STS-128

- Materials' Location on MISSE-6
- Environmental Exposure
- Effects on Coatings
 - Thermal Control Coatings
 - Marker / Astronaut Visual Aid Coatings
- Discussion and Conclusions

MISSE-6B Wake / Ram

Photo courtesy of Langley Research Center

Ram-facing - AZ93 w/Teflon, AZ93, TMS800IY/TMJ-20LSB, AMJ760/AMJ750, AMJ600IR AZ400, MLS85LSB conductive, MLS85LSB

Wake-facing – AZ400, AMJ-700-IBU, MLS85LSB, MLS85LSB conductive, AZ93, AZ93 w/Teflon, AZ93 on Kapton

Environmental Exposure

Ram-facing side

- ~2 x 10²¹ atoms/cm² atomic oxygen (Kapton erosion)
- ~ 2,600 equivalent sun-hours UV

Wake-facing side

- ~1.4 x 10²⁰ atoms/cm² atomic oxygen (Kapton erosion)
- ~ 1,950 equivalent sun-hours UV
- >8,400 thermal cycles of +40/-40 °C

MISSE-6 AZ93 with Teflon overcoat

Samples from MISSE-3 and -4 also ranged from 0.17 to 0.19 in solar absorptance

MISSE-6 AZ93 on Kapton

MISSE-6 AZ93 on beta cloth

MISSE-5 AZ93 on Beta Cloth

No Aluminization

Previously flown AZ93 on Beta Cloth on MISSE-5. Change in reflectance spectra may indicate darkening of beta cloth underneath coating.

MISSE-6 AZ93 applied slightly thicker.

MISSE-6 AZ400 conductive white

MISSE-6 MLS-85-SB

MISSE-6 MLS-85-SB conductive black

Marker Coatings

Comparison between MISSE-5 and MISSE-6

MISSE-5 Environmental Exposure for one year

- $\sim 1.8 \times 10^{20} \text{ atoms/cm}^2 \text{ atomic oxygen}$
- ~ 525 equivalent sun-hours UV
- >6,500 thermal cycles of +40/-40 °C

Left to right, AMJ600IR, AZ93, AMJ700IBU on beta cloth, AMJ760/AMJ750, TMS800IY/TMJ-20LSB screen printed on Dutch glass cloth

Marker Coatings - AMJ600IR

Flight Ram-facing

Control

Marker Coatings - AMJ700IBU

Flight Wake-facing

Control

Marker Coatings - AMJ760/AMJ750

Flight Ram-facing

Control

Marker Coatings - TMS800IY/TMJ-20LSB

Flight Ram-facing

Control

MISSE-6 TMJ-20-LSB on Dutch Glass Cloth

Conclusions

- ◆ Coatings, particularly AZ93 zinc oxide pigment with inorganic binder, held up well in LEO {AO+UV} environment.
- No evidence of significant contamination.
- ♦ Marker / Label coatings maintained their color.
- ♦ Beta cloth darkened due to UV exposure. Solar absorptance was in agreement with previous MISSE exposure.
- ◆ Dutch glass cloth darkened slightly due to UV exposure.

MISSE-7 and MISSE-8

- ◆ Continuing to fly AZ93 as contamination monitor on both MISSE-7 and MISSE-8.
- ♦ MISSE-7
 - ◆ AZ-400, AZ-2000-LSW, AZW/LAII, RM550IB on aluminum
 - ◆ AZ-3700 on Kapton with 3M 966 adhesive
- ♦ MISSE-8
 - ♦ AZ-400, AZ-2000-ICW, AZ-2000-LSW, AZ-2100-IECW white coatings
 - ◆ AZ-3700 metallic coating
 - ◆ MLS-85-SB-C, RM-550-LSB, RM-550-LSB-H, RM-550-LSB-C, RM-550-IB black coatings

Acknowledgments

- Julie Henkener, system manager, Rajib Dasgupta, previous system manager, and Dr. John Alred, deputy system manager for ISS M&P
- Dr. Gary Pippin, Boeing Research & Technology, for estimated environmental exposures.
- Bill Kinard, MISSE chief scientist (retired), Karen Gibson, Ray Seals, and Sandie Gibbs, LaRC
- Beth Cook and Twila Schneider, Advanced Materials for Exploration program